Traceability of all the measurements is established, through periodic calibrations, to the National Standards of Measurements, maintained at NPL and ultimately to the SI units. The accuracy of all measuring instruments used by educational, scientific /technical institutions, industrial establishments and other organizations is ascertained by these periodic calibrations which is essential for 'Quality Control' of all products and processes for consumer protection and for international trade and commerce.



 $(k = 1)^*$ 

measurements.

UTC through GPS network.

Resistance standard (QHR) established at NPLI.

NATIONAL PHYSICAL LABORATORY (Council of Scientific and Industrial Research)

NEW DELHI - 110012, INDIA



# **SI UNITS OF MEASUREMENT**

**Realization of Units and National Standards at NPL, India** 

### This poster describes the base units in the International System (SI) and lists also a number of units derived from them, all of which are part of a coherent measurement system. In a coherent system calculations involving a number of quantities may be made and the correct result is obtained without the introduction of arbitrary constants. The base units and a number of the derived units are the legal units of measurement of the relevant quantities in India.

### **Quantity, Unit, Symbol and Definition**

### Length:

### metre (m)

The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.

The SI unit 'metre' is realized as per recommendations of BIPM for practical realization of the unit 'metre'.

### Mass:

### kilogram (kg)

The 'kilogram' is the unit of mass; it is equal to the mass of the international prototype of the kilogram.

This international prototype is made of platinum iridium and is kept at the International Bureau of Weights and Measures, Serves, Paris, France.

### Time: second(s)

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom.

## **Electric current:**

### ampere (A)

The 'ampere' is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed I metre apart in vacuum, would produce between these conductors a force equal to  $2 \times 10^{-7}$  newton per metre of length.

### Thermodynamic temperature : kelvin (K)

The 'kelvin,' unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.

An lodine  $(^{127}I_2)$  frequency stabilized He-Ne Laser is maintained as per

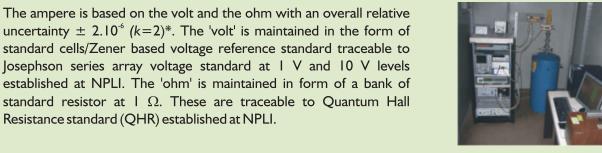
BIPM recommendations. This is the primary optical frequency

standard. The frequency of this radiation (stabilized w.r.t. f component)

is 473612353604.1 kHz and the corresponding vacuum wavelength is

632.99121258 nm with overall uncertainty in measurement  $< 2 \times 10^{-11}$ 

Laser interferometers, calibrated for their frequency against the above


mentioned primary standard, are used to transfer traceability to length

India has copy 57 of the international prototype kilogram, which serves as its primary standards.

Multiple and submultiple of I kg, ranging from I mg to 2000 kg are calibrated against the national prototype kilogram using precision balance with measurement uncertainty ranging from 2  $\mu$ g to 10 g  $(k=2)^*$ 







The triple point of water is realized with an uncertainty of 0.17 mK  $(k=2)^*$  in cells similar to the one illustrated here. Practical temperature in the range 84 K to 2500 K can be measured with appropriate uncertainties throughout this range of temperature. Calibration can be done of all temperature-measuring instruments in this range.

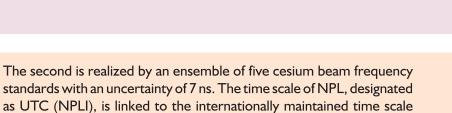




| Derived unit | Symbol | Name         | Symbol |
|--------------|--------|--------------|--------|
| Area         | А      | square metre | m²     |

Examples of SI coherent derived units in terms of base units

| Area                    | А       | square metre             | m²                |
|-------------------------|---------|--------------------------|-------------------|
| Volume                  | V       | cubic metre              | m³                |
| Speed/velocity          | ν       | metre per second         | ms⁻¹              |
| Acceleration            | Α       | metre per second square  | ms <sup>-2</sup>  |
| Wave number             | σ,ν     | reciprocal of metre      | m⁻¹               |
| Specific volume         | υ       | cubic metre per kilogram | m³kg⁻¹            |
| Mass density            | ρ       | kilogram per metre cube  | kgm⁻³             |
| Current density         | J       | Ampere per square metre  | Am <sup>-2</sup>  |
| Magnetic field strength | Н       | ampere per metre         | Am <sup>-1</sup>  |
| Amount Concentration    | С       | mole per cubic metre     | molm⁻³            |
| Mass concentration      | ρ, γ    | kilogram per metre cube  | kgm⁻³             |
| Luminance               | Ĺ,      | candela per square metre | Cdm <sup>-2</sup> |
| Refractive Index        | n       | one                      | 1                 |
| Relative permeability   | $\mu_r$ | one                      | 1                 |
|                         |         |                          |                   |


### **Coherent derived units with special names**

| Quantity                                                                                                 | Name                          | Symbol | In terms<br>of special<br>name | In terms of<br>base units                                      |
|----------------------------------------------------------------------------------------------------------|-------------------------------|--------|--------------------------------|----------------------------------------------------------------|
| Plane angle                                                                                              | radian                        | rad    |                                | m/m                                                            |
| Solid angle                                                                                              | steradian                     | sr     |                                | m²/m²                                                          |
| Frequency                                                                                                | hertz                         | Hz     |                                | S <sup>-1</sup>                                                |
| Force                                                                                                    | newton                        | Ν      |                                | mkgs⁻²                                                         |
| Pressure, stress                                                                                         | pascal                        | Pa     | Nm⁻²                           | m⁻¹kgs⁻²                                                       |
| Energy of any kind                                                                                       | joule                         | J      | Nm                             | m² kgs⁻²                                                       |
| Power, radiant flux                                                                                      | watt                          | W      | J/s                            | m²kgs⁻³                                                        |
| Electric charge                                                                                          | coulomb                       | С      |                                | As                                                             |
| Electric potential<br>difference or e.m.f                                                                | volt                          | V      | W/A                            | m²kgs⁻³A⁻¹                                                     |
| Capacitance                                                                                              | farad                         | F      | C/V                            | m⁻²kg⁻¹s⁴A²                                                    |
| Electric resistance                                                                                      | ohm                           | Ω      | V/A                            | m²kgs⁻³A⁻²                                                     |
| Electric conductance                                                                                     | siemens                       | S      | A/V                            | m <sup>-2</sup> kg <sup>-1</sup> s <sup>3</sup> A <sup>2</sup> |
| Magnetic flux                                                                                            | weber                         | Wb     | Vs                             | m <sup>2</sup> kgs <sup>-2</sup> A <sup>-1</sup>               |
| Magnetic flux density                                                                                    | tesla                         | Т      | Wb/m <sup>2</sup>              | kgs <sup>-2</sup> A <sup>-1</sup>                              |
| nductance                                                                                                | henry                         | н      | Wb/A                           | m <sup>2</sup> kgs <sup>-2</sup> A <sup>-2</sup>               |
| Celsius temperature                                                                                      | degree celsius <sup>(4)</sup> | °C     |                                | K                                                              |
| _uminous flux                                                                                            | lumen                         | lm     | cdsr                           | cd                                                             |
| lluminance                                                                                               | lux                           | lx     | lm/m <sup>2</sup>              | m <sup>-2</sup> cd                                             |
| Activity referred to radio                                                                               | becquerel                     | Bq     | Bq                             | S <sup>-1</sup>                                                |
| Absorbed dose, specific<br>energy imparted, kerma                                                        | gray                          | Gy     | J/kg                           | m <sup>2</sup> s <sup>-2</sup>                                 |
| Dose equivalent,<br>Ambient dose equivalent,<br>directional dose equivalent,<br>personal dose equivalent | sievert                       | Sv     | J/kg                           | m <sup>2</sup> s <sup>-2</sup>                                 |
| Catalytic activity                                                                                       | katal                         | kat    |                                | mols <sup>-1</sup>                                             |

### SI derived units whose names and symbols include derived units with special names and symbols

| y | Name | In terms   | In terms of |
|---|------|------------|-------------|
| • |      | of Special | base units  |
|   |      | nomoo      |             |

The second is realized by an ensemble of five cesium beam frequency standards with an uncertainty of 7 ns. The time scale of NPL, designated



### Luminous intensity: candela (cd)

The 'candela' is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency  $540 \times 10^{12}$  hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

The standards of luminous intensity is maintained through a set of incandescent lamps traceable to international standards. The range covered is 1 cd to 1000 cd at 2856 K. Uncertainty in the measurement is in the range of  $\pm$  1.6 % to 1.4 % (k=2)\*. Radiometric measurement have shown that I cd is equivalent to I/682 watt per steradian.

The mole is not realized directly from its definition. It can be realized in

various indirect ways. The related Avogadro constant, the number of

elementary entities for silicon per mole is now known to have an

uncertainty in silicon molar mass of about a part in a million.

\*k is coverage factor which corresponds to a coverage

probability of approximately 95% confidence level.



Quantity

Dynam Mome

Angula

Angula

Surfac

Heat flu

Heat ca

Specifi

specifi Specifi Therma Energy

Electric

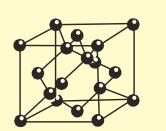
Electric

Surfac

Electric

electric

Permitt


Perme Molar e

molar Exposi

Absorb

Radiar Radian

Catalyt conce



Space Lattice Silicor Avogadro Constant: 6.022 045 x 10<sup>23</sup> mol

| nic viscosity                   | Pascal second                   | Pas                | m <sup>-1</sup> kgs <sup>-1</sup>                |
|---------------------------------|---------------------------------|--------------------|--------------------------------------------------|
| nt of force                     | Newton metre                    | Nm                 | m²kgs⁻²                                          |
| ar velocity                     | Radian per second               | rad/s              | S <sup>-1</sup>                                  |
| ar acceleration                 | Radian per second square        | rad/s <sup>2</sup> | S <sup>-2</sup>                                  |
| e tension                       | Newton per metre                | N/m                | kgs⁻²                                            |
| lux density, irradiance         | Watt per square metre           | W/m <sup>2</sup>   | kgs⁻³                                            |
| apacity, entropy                | Joule per kelvin                | J/K                | m <sup>2</sup> kgs <sup>-2</sup> K <sup>-1</sup> |
| ic heat capacity,<br>ic entropy | Joule per kilogram kelvin       | J/(kgK)            | m <sup>2</sup> s <sup>-2</sup> K <sup>-1</sup>   |
| ic energy                       | Joule per kilogram              | J/kg               | m <sup>2</sup> s <sup>-2</sup>                   |
| al conductivity                 | Watt per metre kelvin           | W/mK               | mkgs⁻³K⁻¹                                        |
| y density                       | Joule per cubic metre           | J/m <sup>3</sup>   | m <sup>-1</sup> kgs <sup>-2</sup>                |
| c field strength                | Volt/metre                      | V/m                | mkgs <sup>-3</sup> A <sup>-1</sup>               |
| c charge density                | Coulomb per cubic metre         | C/m <sup>3</sup>   | m⁻³sA                                            |
| e charge density                | Coloumb per square metre        | C/m <sup>2</sup>   | m⁻²sA                                            |
| c flux density,                 | Coulomb per square metre        | C/m <sup>2</sup>   | m⁻²sA                                            |
| c displacement                  |                                 |                    |                                                  |
| ttivity                         | Farad per metre                 | F/m                | m <sup>-3</sup> kg <sup>-1</sup> s⁴A²            |
| ability                         | Henry per metre                 | H/m                | mkgs <sup>-2</sup> A <sup>-2</sup>               |
| energy,                         | Joule per mole                  | J/mol              | m <sup>2</sup> kgs <sup>-2</sup> mo              |
| heat capacity                   | - · · ·                         | - "                | . 1 .                                            |
| ure (X and rays)                | Coulomb per kg                  | C/kg               | kg⁻¹sA                                           |
| bed dose rate                   | Gray per second                 | Gy/s               | m <sup>2</sup> s <sup>-3</sup>                   |
| nt intensity                    | Watt per steradian              | W/sr               | m²kgs⁻³                                          |
| nce                             | Watt per square metre steradian | W/m²               | kgs <sup>-3</sup>                                |
| tic (activity)<br>ntration      | Katal per cubic metre           | kat/m³             | m <sup>-3</sup> s <sup>-1</sup> mol              |
|                                 |                                 |                    |                                                  |

### **Latest Values of Important Physical Constants**

| Quantity                 | Symbol         | Value                                                                     | unit ur               |
|--------------------------|----------------|---------------------------------------------------------------------------|-----------------------|
| Speed of light in vacuur | n c            | 299 792 458 ms <sup>-1</sup>                                              | exact                 |
| Magnetic constant        | $\mu_{0}$      | 4πx10 <sup>-7</sup> NA <sup>-2</sup>                                      | exact                 |
| Electric constant        | ε <sub>0</sub> | 8.854 187 817x10 <sup>-12</sup> Fm <sup>-1</sup>                          | exact                 |
| Gravitation constant     | G              | 6.67428x10 <sup>-11</sup> m <sup>3</sup> kg <sup>-1</sup> s <sup>-2</sup> | 1.0x10 <sup>-4</sup>  |
| Planck constant          | h              | 6.626 068 96x10 <sup>-34</sup> Js                                         | 5x10⁻³                |
| Elementary charge        | е              | 1.602 176 487x10 <sup>-19</sup> C                                         | 2.5x10 <sup>-8</sup>  |
| Electron mass            | m <sub>e</sub> | 9.109 38215x10 <sup>-31</sup> kg                                          | 5x10⁻³                |
| Proton mass              | m <sub>p</sub> | 1.672 621 637x10 <sup>-27</sup> kg                                        | 5x10⁻³                |
| Fine structure constant  | α              | 7.297 352 5376x10 <sup>-3</sup>                                           | 6.8x10 <sup>-10</sup> |
| Rydberg constant         | R <sub>∞</sub> | 1.0973 731 568 527x10 <sup>7</sup> m <sup>-1</sup>                        | 6.6x10 <sup>-12</sup> |
| Avogadro constant        | Ν <sub>α</sub> | 6.022 14179x10 <sup>23</sup> mol <sup>-1</sup>                            | 5.0x10 <sup>-8</sup>  |
| Molar gas constant       | R              | 8.314 472 Jmol <sup>-1</sup> K <sup>-1</sup>                              | 1.7x10 <sup>-6</sup>  |
| Boltzmann constant       | k              | 1.380 6504x10 <sup>-23</sup> JK <sup>-1</sup>                             | 1.7x10 <sup>-6</sup>  |
| Electron volt            | eV             | 1.602 176 487x10 <sup>-19</sup> J                                         | 2.5x10 <sup>-8</sup>  |
| Atomic mass unit         | u              | 1.660 538 782x10 <sup>-27</sup> kg                                        | 5.0x10 <sup>-8</sup>  |
|                          |                |                                                                           |                       |

### ur means relative standard uncertainty Reference: CODATA-2006 published Mod. Phys. 80,633-730, 2008

Published by : **National Physical Laboratory** Dr. K.S. Krishnan Road **New Delhi- 110012** 

### **Amount of substance :**

### mole (mol)

The 'mole' is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12.

When the 'mole' is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.

### Non-SI units accepted for use with the International System

| Name    | Symbol | Value in SI units                           |
|---------|--------|---------------------------------------------|
| minute  | min    | 1 min = 60 s                                |
| hour    | h      | 1 h = 60 min = 3600 s                       |
| day     | d      | 1 d = 24 h = 86 400 s                       |
| degree  | 0      | $1^{\circ} = (\pi/180)$ rad                 |
| minute  | ,      | $1' = (1/60)^\circ = (\pi/10\ 800)$ rad     |
| second  | "      | $1'' = (1/60)' = (\pi/648\ 000)$ rad        |
| hectare | ha     | $1ha = 1 hm^2 = (100m)^2 = 10^4 m^2$        |
| litre   | l, L   | $1I = 1 \text{ dm}^3 = 10^{-3} \text{ m}^3$ |
| tonne   | ť      | $1t = 10^3 \text{ kg}$                      |

| Non-SI units   |                                  |             |                                                             |
|----------------|----------------------------------|-------------|-------------------------------------------------------------|
| Quantity       | Name                             | Symbol      | Value in SI units                                           |
| Pressure       | bar<br>Millimetres<br>of mercury | bar<br>mmHg | 1 bar = 0.1 MPa = 10 <sup>5</sup> Pa<br>1 mmHg = 133.322 Pa |
| Length         | Angstrom <sup>2</sup>            | Å           | $1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$         |
| Distance       | nautical mile                    | М           | 1 M = 1852 m                                                |
| Area           | barn                             | b           | $1 \text{ b} = 100 \text{ fm}^2 = 10^{-28} \text{ m}^2$     |
| Speed          | knot                             | kn          | 1 kn = (1852/3600) m/s                                      |
| Logarithmic    | Neper                            | (Np)        | Logarithmic ratio to the base e                             |
| ratio          | Bel                              | В           | Logarithmic ratio to the base 10                            |
| sound pressure | Decible                          | dB          | 1 dB= (1/10)B                                               |

| <br><b>~</b> |  |
|--------------|--|
| nrotive      |  |
| <br>prefixe  |  |
|              |  |

| Factor           | Name  | Symbol | Factor            | Name  | Symbol |  |
|------------------|-------|--------|-------------------|-------|--------|--|
| 1024             | Yotta | Y      | 10-1              | Deci  | d      |  |
| 10 <sup>21</sup> | Zetta | Z      | 10-2              | Centi | С      |  |
| 10 <sup>18</sup> | Exa   | E      | 10 <sup>-3</sup>  | Milli | m      |  |
| 10 <sup>15</sup> | Peta  | Р      | 10-6              | Micro | μ      |  |
| 10 <sup>12</sup> | Tera  | Т      | 10 <sup>-9</sup>  | Nano  | n      |  |
| 10 <sup>9</sup>  | Giga  | G      | 10 <sup>-12</sup> | Pico  | р      |  |
| $10^{6}$         | Mega  | М      | 10-15             | Femto | f      |  |
| 10 <sup>3</sup>  | Kilo  | k      | 10-18             | Atto  | а      |  |
| 10 <sup>2</sup>  | Hecto | ha     | 10 <sup>-21</sup> | Zepto | Z      |  |
| 10 <sup>1</sup>  | Deca  | da     | 10 <sup>-24</sup> | Yocto | у      |  |
|                  |       |        |                   |       |        |  |

### Non-SI units whose values in SI units must be obtained experimentally

| Quantity | Name of unit                                 | Symbol<br>for unit   | Value in SI units                                                    |
|----------|----------------------------------------------|----------------------|----------------------------------------------------------------------|
|          | Un                                           | its accep            | ted for use with the SI                                              |
| energy   | electronvolt                                 | eV                   | $1 \text{ eV} = 1.602 \text{ 176 53 (14)} \times 10^{-19} \text{ J}$ |
| mass     | dalton,                                      | Da                   | 1 Da = 1.660 538 86 (28) $\times$ 10 <sup>-27</sup> kg               |
|          | unified atomic mass uni                      | t u                  | 1 u = 1 Da                                                           |
| length   | astronomical unit                            | ua                   | 1 ua = 1.495 978 706 91 (6) $\times$ 10 <sup>11</sup> m              |
|          |                                              | Natu                 | ıral units (n.u.)                                                    |
| speed    | n.u. of speed (speed of light in vacuum)     | C <sub>o</sub>       | 299 792 458 m/s (exact)                                              |
| action   | n.u. of action(reduced<br>Planck constant)   | ħ                    | $1.054~571~68~(18) \times 10^{-34}~J~s$                              |
| mass     | n.u. of mass<br>(electron mass)              | m <sub>e</sub>       | 9.109 3826 (16) × 10 <sup>-31</sup> kg                               |
| time     |                                              | $n/(m_{e}C_{0}^{2})$ | 1.288 088 6677 (86) $\times$ 10 <sup>-21</sup> s                     |
|          |                                              | Ator                 | nic units (a.u.)                                                     |
| charge   | a.u. of charge,<br>(elementary charge)       | е                    | 1.602 176 53 (14) × 10 <sup>-19</sup> C                              |
| mass     | a.u. of mass,<br>(electron mass)             | m <sub>e</sub>       | 9.109 3826 (16) $\times$ 10 <sup>-31</sup> kg                        |
| action   | a.u. of action, (reduced<br>Planck constant) | ħ                    | 1.054 571 68 (18) $\times$ $10^{\text{-34}}\text{J s}$               |
| length   | a.u. of length, bohr<br>(Bohr radius)        | $a_0$                | 0.529 177 2108 (18) × 10 <sup>-10</sup> m                            |
| energy   | a.u. of energy, hartree<br>(Hartree energy)  | E <sub>h</sub>       | 4.359 744 17 (75) × 10 <sup>-18</sup> J                              |
| time     | a.u. of time                                 | $\hbar/E_h$          | 2.418 884 326 505 (16) $\times$ $10^{^{\cdot 17}}{\rm s}$            |

Numerical values of the Non-SI units are as prescribed by BIPM in 2006 Edition of The International System of Units (SI) .